• 产品
  • 供应商
  • CAS号
  • 采购
  • 资讯
  • 会展活动

热搜关键词: Olaparib奥拉帕尼 洗瓶机 替米考星 Cabozantinib Malate卡博替尼苹果酸盐 己二酸价格 >>

您的位置:首页 >> 资讯 >> 研究与发展 >> 上科大、中科院联合开发新型碱基编辑器

上科大、中科院联合开发新型碱基编辑器

https://www.cphi.cn   2018-03-21 10:34 来源:转载

近日,上海科技大学生命学院陈佳教授研究组、中国科学院-马普计算生物学研究所研究员杨力研究组与上海科技大学生命学院黄行许教授研究组通过合作研究,开发出一系列基于CRISPR/Cpf1(Cas12a)的新型碱基编辑器(Cpf1-BE),相关成果以Base editing with a Cpf1– cytidine deaminase fusion为题,在Nature Biotechnology 上在线发表。

       自2016年David Liu实验室、日本神户大学Akihiko Kondo实验室以及我国科学家常兴实验室先后在Nature、Science和Nature Methods杂志上发表了基于Cas9的单碱基基因编辑系统之后,相关研究迅猛发展、方兴未艾。由于单碱基编辑系统可能极大地推动疾病模型制备、动植物的育种和人类疾病的临床治疗,因此目前迫切需求该系统变得越来越精确高效。目前已报道的碱基编辑系统均是基于Cas9蛋白,然而基于Cpf1(Cas12a)的新型碱基编辑器暂未见报道。那么基于Cpf1(Cas12a)的单碱基编辑系统有什么优势呢?

       近日,上海科技大学生命学院陈佳教授研究组、中国科学院-马普计算生物学研究所研究员杨力研究组与上海科技大学生命学院黄行许教授研究组通过合作研究,开发出一系列基于CRISPR/Cpf1(Cas12a)的新型碱基编辑器(Cpf1-BE),相关成果以Base editing with a Cpf1– cytidine deaminase fusion为题,在Nature Biotechnology 上在线发表。

       传统的CRISPR/Cas9基因编辑技术虽然具有较高的基因敲除效率,但在执行碱基替换(譬如对造成遗传性疾病的点突变进行矫正)时效率通常很低,这也限制了CRISPR/Cas9基因编辑的应用。近年,利用将CRISPR/Cas9和APOBEC(胞嘧啶脱氨酶)整合而发展出的新型碱基编辑系统(Base Editor, BE),可在单碱基水平(如胞嘧啶向胸腺嘧啶)实现高效率的基因组靶向编辑改造【1-7】。这种新型碱基编辑系统理论上可对数百种引起人类疾病的基因组点突变进行定点矫正,因此拥有巨大的临床应用潜力。

       目前已报道的碱基编辑系统均是利用Cas9蛋白(主要是Streptococcus pyogenes Cas9, SpCas9和Staphylococcus aureus Cas9, SaCas9)执行与基因组的靶向性结合,而这种靶向性结合依赖于靶点旁侧的PAM(Protospacer Adjacent Motif)序列。SpCas9和SaCas9蛋白所识别的PAM序列多含鸟嘌呤/胞嘧啶(G/C-rich),因此利用已报导的碱基编辑系统无法在腺嘌呤/胸腺嘧啶富集(A/T-rich)区域进行高效的碱基编辑操作。

       在这项最新的研究中,来自上海科技大学和中科院的科研人员通力合作,构建了一系列基于CRISPR/Cpf1蛋白的新型碱基编辑器(Cpf1-BE)。由于Cpf1 蛋白可识别富含腺嘌呤/胸腺嘧啶的PAM序列【8-12】,这种基于Cpf1的新型碱基编辑器实现了在腺嘌呤/胸腺嘧啶富集区域的碱基编辑操作。在拓展编辑区域的同时,基于Cpf1的新型碱基编辑器所产生的编辑副产物也较低,因此具有更高的编辑精准度。这种基于Cpf1的新型碱基编辑器与现有的基于Cas9的碱基编辑器可实现碱基编辑的有效互补,为碱基编辑系统在基础研究及未来临床领域的全面深入应用提供了新方法、拓展了新思路。

       Cas9碱基编辑器与Cpf1碱基编辑器的特点比较

       据悉,该工作在陈佳教授、杨力研究员、黄行许教授的共同指导下,由陈佳研究组2014级硕博连读研究生李潇飒、杨力研究组2015级硕博连读研究生王滢和黄行许研究组2014级硕博连读研究生刘亚京等共同完成。

       值得一提的是,陈佳课题组和杨力课题组及其合作者在最近一年时间中先后还在Cell Research和Nature Structure Molecular Boilogy杂志上发表研究论文,开发了一种增强型碱基编辑器(enhanced base editor, eBE),其克服了原有碱基编辑技术保真度较低的缺陷,实现了更高准确度的基因组单碱基编辑【6】;研究揭示了胞嘧啶脱氨酶(APOBEC)在CRISPR/Cas9引发的DNA断裂修复过程中产生突变的新机制,提出了利用双链寡聚核苷酸或者双链质粒DNA作为修复模版、以及抑制内源APOBEC的策略来提高CRISPR/Cas9编辑的保真度和精确性,为进一步提高基因组编辑保真度提供了新思路【13】。

       参考资料

       1. Komor AC, Kim YB, Packer MS, Zuris JA and Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533:420-424

       2. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z and Kondo A. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353:

       3. Kim K, Ryu SM, Kim ST, Baek G, Kim D, Lim K, Chung E, Kim S and Kim JS. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol, 2017

       4. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D and Gao C. Precise base editing in rice, wheat and maize with a Cas9- cytidine deaminase fusion. Nat Biotechnol, 2017

       5. Lu Y and Zhu JK. Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant, 2017, 10:523-525

       6. Wang L, Xue W, Yan L, Li X, Wei J, Chen M, Wu J, Yang B, Yang L and Chen J. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res, 2017, 27:1289-1292

       7. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z and Liu DR. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018

       8. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV and Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163:759-771

       9. Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F and Nureki O. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 2016, 165:949-962

       10. Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N and Huang Z. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature, 2016, 532:522-526

       11. Stella S, Alcon P and Montoya G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature, 2017, 546:559-563

       12. Swarts DC, van der Oost J and Jinek M. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Mol Cell, 2017, 66:221-233 e224

       13. Lei, L., Chen, H., Xue, W., Yang, B., Hu, B., Wei, J., ... & Yan, L. (2018). APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks. Nature structural & molecular biology, 25(1), 45.

       

点击下图,即刻登记观展!

预登记

如果这篇文章侵犯了您的权利,请联系我们。

市场动态更多 >>
主编视角更多 >>
热门标签更多

投稿合作联系方式: Kelly.Xiao@imsinoexpo.com 021-33392297

地址:上海市徐汇区虹桥路355号城开国际大厦7-8楼 200030

CPHI 网上贸易平台: CPHI.cn| Pharmasources.com| CPHI-Online.com
客服热线:  86-400 610 1188 (周一至周五 9: 00-18: 00)