• 产品
  • 供应商
  • CAS号
  • 采购
  • 资讯
  • 会展活动

热搜关键词: 三氟乙酸 伪麻黄碱 人血白蛋白价格 高速压片机 Olaparib奥拉帕尼 >>

您的位置:首页 >> 资讯 >> 研究与发展 >> 深度 | 循环肿瘤细胞的检测方法

深度 | 循环肿瘤细胞的检测方法

https://www.cphi.cn   2018-12-12 11:20 来源:火石创造

近年来随着现代医学研究技术的进步和CTC临床应用价值凸显,许多研究机构和研发团队都在推出不同的CTC检测技术。由于血液中CTC的含量极低,目前主流的检测方法是先捕获(富集)后检测,少量方法是不捕获(富集)直接检测。

       近年来随着现代医学研究技术的进步和CTC临床应用价值凸显,许多研究机构和研发团队都在推出不同的CTC检测技术。由于血液中CTC的含量极低,目前主流的检测方法是先捕获(富集)后检测,少量方法是不捕获(富集)直接检测。CTC检测技术包括CTC的富集(分离)和CTC的分析鉴定(识别)。本篇文章将介绍CTC的富集和分析方法,尤其重点介绍CTC的富集方法。

       一、CTC富集方法的分类和原理

       人体循环系统中CTC的含量极低,肿瘤转移患者每毫升全血中仅有1~10个CTC,因此要实现CTC的检测对其进行分选富集是一个关键的步骤。CTC分选富集效果的优劣将会直接影响其后续的检测效果,因此高纯度、高灵敏性(不丢失CTC)、快速、高细胞活性的CTC分选富集是CTC临床应用的重点和难点。

       CTC的富集方法可以分为生物化学特性富集法(亲和性富集法)和物理特性富集法。亲和性富集法主要是根据通过细胞表面特异性表达的蛋白质生物标志物分离靶细胞,包括正向捕获CTC的阳性富集法和负向去除白细胞的阴性富集法。物理特性富集法主要是根据CTC的大小、密度、力学和介电性能等物理特性将CTC筛选出来。

       1.1 亲和性富集法

       亲和性富集法根据结合的靶细胞是CTC还是白细胞,可分为阳性富集法和阴性富集法。阳性富集法主要利用特异性抗体与肿瘤细胞表面抗原进行特异性结合来富集CTC。CTC分为上皮细胞表型、间质细胞表型和上皮间质细胞混合表型,因此用于CTC阳性富集的特异性抗体分为识别上皮标志物、识别间质标志物和识别上皮间质标志物三种。其中,上皮标志物在正常上皮细胞和上皮肿瘤(即癌)上表达,但在间质白细胞上不存在,因此经常用于区分癌细胞和正常血细胞。上皮细胞粘附分子(EpCMA)是最常用于上皮表型CTC阳性富集的细胞表面标志物。此外,由于细胞骨架蛋白对于上皮细胞具有特异性,细胞角蛋白家族成员(即CK8,CK18和CK19)已经成为检测具有上皮表型癌症患者CTC的“金标准”标记物。阴性富集法也称白细胞去除法,通常用识别CD45或CD14的特异性抗体与白细胞结合,从而去除全血中的白细胞。

       除了特异性抗体,亲和性结富集法的某些技术采用与CTC或白细胞表面抗原特异性结合的多肽或适配体(aptamer,一种单链DNA或RNA分子,与目的蛋白有很高的亲和力和特异性)替代抗体来实现阳性或阴性富集。

       生化特性富集法

       资料来源:NatRev Cancer. 2014 Sep;14(9):623-3

       1.1.1 免疫磁珠技术

       亲和性富集法目前基于免疫磁珠技术和微流控芯片技术对CTC进行富集。免疫磁珠技术是根据免疫亲和的原理,将免疫磁珠与捕获抗体或特异性多肽(可与血液中的CTC或白细胞表面抗原相结合)相连接,随后通过磁场即可将磁珠捕获与未捕获的细胞分离。

       基于免疫磁珠技术的亲和性富集法的原理

       1.1.2 微流控芯片技术

       微流控(microfluidics)是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术。微流控芯片是微流控技术实现的主要平台和技术装置,因其样品量小、流速可控及构件透明性等特点,已被广泛应用于CTC的分选富集中。微流体芯片技术基于亲和性富集法分离CTC时,芯片内部的微通道或微结构上修饰能够与CTC或白细胞表面抗原结合的特异性抗体或适配体,当血液流经芯片时,特异性抗体或适配体可与目的细胞表面抗原结合,随后将CTC或白细胞粘附在芯片上,实现CTC的阳性捕获或阴性富集。

       基于微流体芯片技术的亲和性富集法的原理

       资料来源:生物化学与生物物理进展2015,42(4): 301~312

       1.2 物理特性富集法

       物理特性富集法根据物理性质来分离CTC,包括大小、密度、力学和介电性质。从大小上来看,CTC的直径约为10-20μm,而血细胞大小为7-12μm,通过过滤可留下体积较大的CTC。从密度上来看,CTC的密度较白细胞和红细胞密度小,通过密度梯度离心可实现CTC分离。除了大小和密度的差异,一些技术也利用CTC和血细胞之间的力学和介电性质差异来捕获CTC。具体来说,CTC的可变形性不及血细胞。另外,CTC的膜电容通常较血细胞低,在一定强度的电场中,其迁移率与血细胞会产生差异。微流控技术除了在亲和性富集法中有广泛应用外,在物理特性富集法中也有应用。微流控芯片根据CTC与血细胞物理特性的差异,通过在芯片中设置不同的微结构单元将其从血液中分离出来,常用的微结构包括微孔、微过滤网和微柱等。

       1.3 生化和物理特性相结合的方法

       此外,也有一些技术将CTC的物理和生物化学特性结合起来用于CTC富集。如CTC-iChip,其基于CTC大小和表面标志物的表达情况进行CTC富集。该技术首先根据细胞大小,将较小的红细胞和血小板过滤出去,留下白细胞和肿瘤细胞。然后,用识别EpCAM的磁珠偶联抗体对CTC进行免疫染色,在磁场中捕获并收集在芯片上。或者用识别CD45的磁珠偶联抗体去除白细胞后收集CTC。

       生化和物理特性相结合的富集法(以CTC-iChip为例)

       二、CTC富集技术的发展历程和趋势

       2.1 发展历程

       从技术发展史来看,CTC富集技术分为三代:第一代为基于物理特性的粗分离技术,第二代为基于生化特性的免疫磁珠技术,第三代为基于物理或生化特性的微流控芯片技术。

       2.1.1 基于物理特性的粗分离技术

       基于物理特性的粗分离技术通过特殊滤膜装置、密度梯度离心将CTC分离出来。这些技术操作简单成本低廉,不依赖细胞表面抗原的表达,捕获的细胞数量多,但是由于CTC物理特性的异质性,难以富集到高纯度的CTC。

       基于物理特性的粗分离技术

       2.1.2 基于生化特性的免疫磁珠技术

       基于生化特性的免疫磁珠技术通过免疫磁珠偶联的抗体或多肽正向或负向筛选出CTC。由于技术的限制,早期的磁珠只能达到微米级。随着纳米技术的发展,现在使用的磁珠大都为纳米级,其增大的比表面积增加了与待测细胞的接触几率,更好的分散性降低了对细胞造成的机械性压力,大大提高了CTC的富集率。最典型的基于免疫磁珠富集CTC的技术平台是强生子公司veridex的CellSearch,其是全球目前唯一同时经过FDA和CFDA批准的用于CTC检测的商业化产品。该产品由于检测灵敏度不高,且无法分离活体CTC,2016年初已停产。除了CellSearch之外,也有多种技术平台基于免疫磁珠技术捕获CTC,如AdnaGen公司(已被Qiagen收购)的AdnaTest,Miltenyi公司的MACS,Illumina公司的MagSweeper。

       用于CTC检测的CellSearch平台。(A)将血液吸入含有EDTA和细胞保护剂的CellSave保护管中;(B)将7.5mL血液转移到单独的管中并离心以分离固体血液成分和血浆;(C)样品放入CELLTRACKS?AUTOPREP? 系统中,吸出血浆并将样品重悬于缓冲液中;(D)添加偶联EpCAM抗体的磁性纳米颗粒并与EpCAM阳性细胞结合,从而“富集”上皮来源的CTC。然后将磁珠结合的细胞与其他细胞通过磁性分离;(E)CTC用CK8,CK18和CK19抗体染色。CD45阳性染色细胞被认为是白细胞,并被排除在分析之外;(F)应用DAPI染色细胞核;(G)施加磁力以分离磁珠结合的EpCAM阳性细胞;(H)CK阳性、DAPI阳性、CD45阴性的细胞被认为是CTC用于进一步分析。

       资料来源:TranslLung Cancer Res. 2017 Aug;6(4):473-485

       2.1.3 微流控芯片技术

       微流控芯片技术基于CTC的物理特性或生化特性或两种特性的结合来富集CTC,所需样品量小、流速可控而且能够捕获活细胞。微流控芯片技术目前已经历了三代的发展过程:第一代芯片为以CTC-Chip为代表,第二代芯片以HB-Chip为代表,第三代芯片以CTC-iChip为代表。

       微流微柱富集:该类芯片基于CTC与血细胞生化特性的差异,在芯片中设置微柱阵列将其从血液中分离出来。此类芯片以CTC-Chip为代表,该芯片是第一个使用微流体技术富集CTC的装置。CTC-Chip由78,000个微柱阵列组成,微柱被识别EpCAM的抗体包被,微柱的几何排列和流体流速被优化以促进细胞附着到抗体包被的柱上。除了CTC-Chip,也有一些公司开发基于微柱结构的芯片富集CTC,如Captura公司的GEDI-Chip,Biocept公司的OncoCEE。基于微柱结构的芯片由于复杂的微柱设计很难在大规模的基础上进行高通量生产。此外,目前用于CTC检测和表征的技术严重依赖于免疫细胞化学和需要高分辨率成像的其他技术,这在非透明三维微柱阵列的存在下是困难的。

       第一代芯片CTC-Chip

       资料来源:TranslLung Cancer Res. 2017 Aug;6(4):473-485

       微流表面富集:由于基于微柱结构的芯片的局限性,表面捕获的微流体芯片被开发,这些芯片使用抗体包被的表面装置捕获CTC。表面捕获装置的简化架构更适合于大规模生产,并且还允许制造更易于成像的透明装置。此类芯片以HB-Chip为代表,其微流道的结构为鱼骨形(HB),表面被识别EpCAM的抗体包被,血液流过一个可视通道,通道内鱼骨形沟回能够引起血液的一个轻微斡旋,从而增强了其与抗体修饰表面的接触。与第一代CTC芯片相比,第二代的HB芯片制作更为简单,且可更高效地捕获肿瘤细胞,捕获效率约90%。后人在第二代的基础上加上了aptamer(结合CTC表面的EpCAM),进一步提高了CTC的捕获效率。除了HB-Chip,GEM-Chip、GO-Chip以及BioFluidica公司的ModularSinusoidal Microsystem也都采用表面装置捕获CTC。使用表面捕获装置的一个挑战是下游处理的灵活性,捕获的CTC被固定在装置的表面上,并且难以恢复以进行进一步分析。在胰蛋白酶消化后可以释放在这些装置中捕获的细胞,然而胰蛋白酶很可能切割用于后续分析的许多感兴趣的表面受体。

如果这篇文章侵犯了您的权利,请联系我们。

市场动态更多 >>
主编视角更多 >>
热门标签更多

投稿合作联系方式: Kelly.Xiao@imsinoexpo.com 021-33392297

地址:上海市徐汇区虹桥路355号城开国际大厦7-8楼 200030

CPHI 网上贸易平台: CPHI.cn| Pharmasources.com| CPHI-Online.com
客服热线:  86-400 610 1188 (周一至周五 9: 00-18: 00)